Metaplectic-c Quantomorphisms
نویسنده
چکیده
In the classical Kostant–Souriau prequantization procedure, the Poisson algebra of a symplectic manifold (M,ω) is realized as the space of infinitesimal quantomorphisms of the prequantization circle bundle. Robinson and Rawnsley developed an alternative to the Kostant–Souriau quantization process in which the prequantization circle bundle and metaplectic structure for (M,ω) are replaced by a metaplectic-c prequantization. They proved that metaplectic-c quantization can be applied to a larger class of manifolds than the classical recipe. This paper presents a definition for a metaplectic-c quantomorphism, which is a diffeomorphism of metaplectic-c prequantizations that preserves all of their structures. Since the structure of a metaplectic-c prequantization is more complicated than that of a circle bundle, we find that the definition must include an extra condition that does not have an analogue in the Kostant–Souriau case. We then define an infinitesimal quantomorphism to be a vector field whose flow consists of metaplectic-c quantomorphisms, and prove that the space of infinitesimal metaplectic-c quantomorphisms exhibits all of the same properties that are seen for the infinitesimal quantomorphisms of a prequantization circle bundle. In particular, this space is isomorphic to the Poisson algebra C∞(M).
منابع مشابه
METAPLECTIC OPERATORS ON C n by HANS
The metaplectic representation describes a class of automorphisms of the Heisenberg group H = H(G), defined for a locally compact abelian groupG. ForG = R ,H is the usual Heisenberg group. For the case when G is the finite cyclic group Zn, only partial constructions are known. Here we present new results for this case and we obtain an explicit construction of the metaplectic operators on C. We ...
متن کاملTwo Simple Observations on Representations of Metaplectic Groups
M. Hanzer and I. Matić have proved that the genuine unitary principal series representations of the metaplectic groups are irreducible. A simple consequence of that paper is a criterion for the irreducibility of the non-unitary principal series representations of the metaplectic groups that we give in this paper.
متن کاملAutomorphic Forms and Metaplectic Groups
In 1952, Gelfand and Fomin noticed that classical modular forms were related to representations of SL2(R). As a result of this realization, Gelfand later defined GLr automorphic forms via representation theory. A metaplectic form is just an automorphic form defined on a cover of GLr, called a metaplectic group. In this talk, we will carefully construct the metaplectic covers of GL2(F) where F i...
متن کاملA note on optimality of quantum circuits over metaplectic basis
Metaplectic quantum basis is a universal multi-qutrit quantum basis, formed by the ternary Clifford group and the axial reflection gate R = |0〉〈0| + |1〉〈1| − |2〉〈2|. It is arguably, a ternary basis with the simplest geometry. Recently Cui, Kliuchnikov, Wang and the Author have proposed a compilation algorithm to approximate any twolevel Householder reflection to precision ε by a metaplectic cir...
متن کاملMetaplectic Forms and Representations
where the image of A is in the center of G̃. If G and G̃ are topological groups, and if A is a discrete subgroup of the center of G̃, then we may think of G̃ as a cover of G, in the topological sense. So we will sometimes use the term covering group. Very often for us, A will be the group μn(F ) of n-th roots of unity, in a given field F . We will use this notation only if |μn(F )| = n. By a Metapl...
متن کامل